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Review Article 
Electronic Transport in Short Mean-free Path 
Liquid Metals 

J. S. McCASKlLL and N. H.  MARCH 
Theoretical Chemistry Department. University of Oxford, 1 South Parks Rd.. 
Oxford OX7 3TG, England 

(Received January 24, 1982) 

Recent work on the theory of electronic transport is reviewed. Attention is focused on liquid 
metals but contact is made with theories of localization due to disorder. 

1 OUTLINE 

The object of this review is to consider recent treatments of electronic 
transport in short mean-free path liquid metals. In particular, the connec- 
tion between the approach of Gotze2 on the one hand and that of Ferraz 
and March’ on the other is considered. It will be demonstrated that they are 
both theories of inverse transport  coefficient^.^.^ 

In Section 2, we present physical arguments by means of which one can 
introduce a finite mean-free path into the Ziman theory of liquid metals. 
This establishes a general framework for the theory but leaves one with the 
task of establishing how the blurring of the Fermi surface in the liquid 
metal due to the disorder scattering is to be described quantitatively. This 
is treated in Section 3, where the specific theories of Fermi surface blurring 
presently available are reviewed. Section 4 treats some more general aspects 
of transport and spectra in the presence of disorder. The review concludes by 
focusing on some presently unanswered questions in the theory of electronic 
transport in disordered systems. 
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2 INTRODUCTION OF FINITE MEAN FREE PATH INTO 
Z lMAN THEORY OF LIQUID METALS 

J.  S. McCASKILL A N D  N. H. MARCH 

The Ziman formula’ for the electrical resistivity 

has as the basic input information: 

i) The static liquid structure factor S(q) ,  accessible through X-ray or 
neutron scattering experiments and 

ii) The screened electron-ion pseudopotential form factor V(9, k,) for 
elastic scattering on the Fermi sphere of radius k,. 

In Eq. (2.1), the conduction electron density n is related to k, by k, = 
(3nzn)”3, 0 is the unit step function, rn and e are as usual the electron mass 
and charge respectively while Z is the number of conduction electrons per 
ion. 

It is immediately clear that while Eq. (2.1) is of course correct to second 
order in the form factor V(q ,  kf), it is not self-consistent in that it leads to a 
finite resistivity p and hence to a finite transport mean-free path 

whereas on the right-hand side of Eq. (2.1) the Heaviside function 8 cuts off 
the q integration at 2k, corresponding to a perfectly sharp Fermi surface. 
But the Heisenberg uncertainty principle requires that the blurring of the 
Fermi surface, Aq say, is directly related to the mean-free path I by 

IAq - 1 (2.3) 
and hence one ought to determine the mean-free path self-consistently. 

Ferraz and March3 therefore replace Eq. (2.1) by 

Evidently the new feature of the theory beyond the nearly free electron 
approximation (2.1) is the way in which r depends on the mean-free path 1. 
Once this question can be settled, Eq. (2.4) provides an equation which 
must be solved self-consistently for the mean-free path. This feature is essen- 
tial to the discussion of the present review. It is quite clear that as the mean- 
free path I becomes longer and longer the function in Eq. (2.4) must cut 
off more and more sharply at 9 = 2k,. In this limit when the mean-free path 
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TRANSPORT IN LIQUID METALS 3 

tends to infinity, comparison of Eqs. (2.4) and (2.1) shows that, apart from a 
multiplying constant we need not write out here, r = q-’8(2k, - q). 

But there are other points to be made when we pass to the regime of 
strong scattering, or short mean-free path. The first is that even in the regime 
where there is still good metallic conductivity, one cannot expect the pair 
function, which is the Fourier transform of S(q) - 1, to contain adequate 
structural information concerning the liquid metal. Therefore one must 
recognize that, in the final theory of electronic transport in short mean-free 
path liquid metals, it may be necessary to derive a formula for r(q, k,, r )  
which is an average over configurations into which is built the higher-order 
ionic correlation functions g 3 ,  g4, etc., for 3,4, etc., particle correlations. 

Though some attention has been given to this point in earlier theories of 
electronic states in liquid metals,”* progress to date has resulted, as we shall 
clarify below, from regarding this information as approximately subsumed 
into the electrical resistivity p through the dependence of on the mean-free 
path 1. Clearly, this is an approximation, but as already stressed, the idea 
behind the two basic approaches reveiwed in Section 3 below is to solve self- 
consistently for the mean-free path. The final point. we must make before 
turning to discuss these two treatments is that we know from the pioneering 
work of Anderson’ that under conditions of sufficient disorder there will be a 
(one-electron) transition from extended to localized electron states. If, as 
seems possible from both experiment and theory, there is a critical mean-free 
path, 1, say, below which the system becomes insulating at T = 0 due to 
disorder scattering, then it is obvious that the calculation of the function r 
near I = 1, is a matter of considerable complexity. Therefore, in Section 3 
below, we shall first discuss the case of liquid simple metals, where r can 
be calculated essentially by rather elementary kinetic  method^.^ Following 
that, we shall turn to Gotze’s work which appears to contain within itself a 
procedure which will work, at least semiquantitatively, near the critical 
mean-free path I,. 

3 THEORIES OF F E R M l  SURFACE BLURRING IN LIQUID METALS 

Accepting that the self-consistent solution of Eq. (2.4) for the mean-free 
path 1 is the basic approach presently available to us, we shall now outline 
below the two theories proposed to date which allow explicit approxima- 
tions to the function r(q, k,, /)to be set up. We start with the work of Ferraz 
and March’ which has been refined and also applied numerically to liquid 
simple metals by Leavens et aL6 Then we shall review the alternative approach 
of Gotze. 
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4 J .  S. McCASKILL AND N. H. MARCH 

3.1 Force-force correlation function and average density matrix 

In Refs. 3 and 6, the problem of the higher order ionic correlation functions 
referred to above, which will arise in the presence of strong scattering, is 
circumvented by arguing that what is important in the theory of the elec- 
trical resistivity of liquid metals is that the density matrix describing the 
electron states has built into it knowledge of the electronic mean-free path. 
Ferraz and March3 accomplish this by starting from the theory of inverse 
transport which yields p, apart from a multiplying constant, in 
terms of the force-force correlation function, denoted by F below : 

where V is the total scattering potential energy while LT denotes the energy 
derivative of the Dirac density matrix evaluated at the Fermi energy E,.? In 
the work of Ferraz and March,3 the very simplest choice 

is made, in which only the offdiagonai elements of the density matrix are 
altered from the Ziman nearly free electron theory, these off-diagonal 
elements being damped with a factor which is essentially coming from the 
kinetic theory formula for the probability of a path of a given length, which 
is proportional to exp (- r/O. 

In the treatment of Ferraz and March,3 and also that in Ref. 6, the screened 
electron-ion pseudopotential was also taken to depend on the mean-free 
path through the dependence of the q-dependent dielectric function on 1. 
This point is discussed fully in Ref. 6. 

Without going into the intricate details, we record in Table I the results 
of Leavens er ~ 1 . ~  for liquid simple metals, together with the values obtained 
from the Ziman formula (2.1) and with the experimental results. 

It is clear from Table I that while the self-consistent results could not be 
claimed to afford a systematic improvement on those of the Ziman theory, 
in cases where there is a large discrepancy between that theory and ex- 
periment, namely Li and Cs, a distinct improvement is found. The other 
point concerning Table I is that the self-consistent results are in the cases 
studied all greater than the Ziman values. 

What seems more important to stress than the above points of detail is 
that the approach based on Eq. (2.4) allows a self-consistent completion of 

t See Appendix 1 for the use of Eq. (3.1) to treat impurity scattering. 
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TRANSPORT I N  LIQUID METALS 

TABLE I 

Electrical resistivities calculated from the 
Ziman formula (2.1) and from the self-consis- 
tent treatment of Leavens et Units of p are 

pR cm 

5 

Liquid metal 

Li (463 K) 
Na (378 K) 
K (343 K) 
Rb (313 K) 
Cs (303 K) 
Mg (953 K) 
Al(943 K) 

Exp. Ziman 

25.1 13.9 
9.7 10.2 

14.3 15.9 
22.6 28.2 
37.1 29.2 
25.5 21.5 
24.4 19.5 

Self-cons. 

17.7 
10.9 
16.9 
29.9 
33.3 
22.4 
20.5 

the Ziman theory without affecting the overall success of that theory for the 
liquid simple metals. 

Of course, none of the metals treated above is a really short mean-free 
path metal. It is not at all clear that the use of the approach of Ferraz and 
March would give equally satisfactory results for short mean-free path 
metals. However, it seems entirely possible that the work of Gotze’ may be 
applicable to such situations and we therefore turn next to consider his 
met hod. 

3.2 Mode coupling approach of Gotze 

Gotze’s work was primarily motivated by the desire to discuss both really 
short mean-free path situations and also to treat the transition to localiza- 
tion induced by disorder. To this end, he did not explicitly consider the 
short-range order, so vital to obtain quantitative results for transport 
coefficients in liquid metals. Nevertheless, his treatment is readily extended 
to incorporate the pair correlation function, or its q-space transform, the 
liquid structure factor S(q). 

It should also be emphasized that, unlike the treatment of Ferraz and 
March which dealt solely with the the d.c. resistivity, Gotze from the outset 
regarded the d.c. conductivity as the zero frequency limit of the frequency 
dependent conductivity a(o). Following the ideas of Drude theory, which 
expresses ~ ( o )  in the form 

(3.3) 
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6 J.  S. McCASKILL A N D  N. H. MARCH 

T being the Drude relaxation time, Gotze chose to work with a quantity 
M ( z )  introduced by writing 

I 
(T(z) = 

z + M ( z )  (3.4) 

with z viewed as a complex variable. Taking the limit of zero frequency, 
which is equivalent to letting z tend to zero in Eq. (3.4), it is clear that 

Therefore it becomes evident that (a) the theory, being based on M, is that 
for an inverse transport coefficient and (b) the quantity M in the zero fre- 
quency limit is pure imaginary. 

If at this stage we extend Gotze's work by introducing the structure 
factor S(q) ,  we can write his mode-coupling approximation for M(0)  in 
terms of the screened electron-ion pseudopotential V(q ,  k,) as 

Equation (3.6) is evidently of the same form as Eq. (2.4) when we replace the 
summation over q by an integration. Unlike the treatment of Ferraz and 
March3 however, Gotze regards +(q, 0) as the zero frequency limit of the 
particle density correlation function 4(q, z )  which he then approximates in 
terms of the Lindhard function &'(q, z )  and wavenumber dependent com- 
pressibility g(q) through 

Since from Eqs. (3.5)-(3.7), one can solve self-consistently for M(0)  (actually 
Gotze solves more generally for M(z) ) ,  one can see that though the detail 
of the theory differs importantly from that of Ferraz and March,3 it fits into 
the form represented by Eq. (2.4). In other words, it affords another way of 
introducing the Fermi surface blurring through the function r(q, k,, 0. That 
this method will reduce correctly to the Ziman theory in the limit of very 
long mean-free path has already been emphasized by Gatze. 

In spite of the differences in the form of r(q, k,, 1) in the two approaches, 
it seems clear that for simple liquid metals they should yield rather similar 
results (cf Section 4 and Appendix 2 also). However, by making some further 
approximations, Gotze has been able to solve the self-consistent problem 
he has posed, for random scattering centres, by analytical methods in the 
two limits of weak and of strong coupling. It is an appealing feature of his 
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TRANSPORT IN LIQUID METALS I 

approach that he can demonstrate in the strong coupling limit that his ap- 
proximate Eqs. (3.6) and (3.7) can lead to localization due to disorder. We 
shall discuss this point, though by more elementary methods than those of 
Gotze, a little further in the following section. However, to conclude the 
present section, the final comment we must make on the relation between the 
the two different methods surveyed above is that in each case the function r 
representing the blurring of the Fermi surface in Eq. (2.4) is, essentially, 
constructed from quantities characteristic of the uniform electron gas. 

4 TRANSPORT AND SPECTRA IN DISORDERED SYSTEMS 

In this section we shall be concerned with the relation between the theory of 
electronic transport in short mean-free path liquid metals, treated at some 
length above, and electronic level spectra. In calculating the average density 
of states, or more generally the average Green function, no clear distinction 
is drawn between the closely spaced sequence of delta functions and the con- 
tinuum when the former are averaged over the disordered structures. O,  

The Ferraz-March assumption in Eq. (3.2) has the structure of an average 
Green function and in the light of the preceding comment it is hard, at first 
sight to see how it can contain information about localization. However, by 
a standard mean field theory of the resulting self-consistent equation we 
demonstrate in Section 4.1 that this is in fact the case. In this way we forge a 
link which enables a comparison to be made with Gotze’s theory. 

4.1 

To examine whether the simple kinetic approach of Ferraz and March can 
have any link with localization, we show in Table I1 below the ratio of the 
self-consistent resistivity to the Ziman value for the liquid metals listed in 
Table I. 

Relation between self-consistent theory and electron 
localization 

TABLE I1 

Ratio R of self-consistently calculated resistivity to Ziman value for liquid 
metals considered in Table I 

Liquid metal Li Ma K Rb Cs Mg Al 

Ratio R 

p self-cons. 

p Ziman 
- - 1.27 1.07 1.06 1.06 1.14 1.04 1.05 
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8 J .  S. McCASKILL A N D  N. H. MARCH 

What is seen to be rather striking is that the ratio for all the liquid metals 
except for the two with the largest deviation from the Ziman resistivity is 
rather constant, ranging only from 1.04-1.07. If, additionally, we argue that 
the Ziman theory is best for those liquid metals with the weakest electron-ion 
interaction, that would immediately reduce the discussion to Na, K and Rb, 
the polyvalent metals having a stronger electron-ion coupling. For these 
three liquid metals the ratio in Table I1 is essentially constant at the value 1.06. 

To see the significance of this consequence R = constant of the approach 
embodied in Eqs. (3.1) and (3.2), let us expand in powers of 1/1 and write to 
first order 

P = P n / e  + AP (4.1) 

and for all the cases in Table I1 we see that Ap(1-I) is positive. If we now 
write 

Ap I* - = -  
P n / e  I 

then in the treatment of Ferraz and March it follows that I* is precisely defined 
as 

the denominator of Eq. (4.3) being, essentially, the Ziman resistivity, Writing 
Eqs. (4.1) and (4.2) as 

it follows immediately from the result R = constant that for the three nearly 
free electron alkali metals 

I* 
= constant = 0.06. (4.5) 

/melting point 

If, following arguments given by Got=,, but now in the context of the 
approach of Ferraz and March,’ we argue that mean field theory can be 
used to discuss the transition to a localized regime, then this theory would 
replace 1 + x in Eq. (4.4), valid for small x = / * / I  by 1/(1 - x) and write 

1 
R =  

1 - (l*/l)* (4.4) 
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TRANSPORT IN LIQUID METALS 9 

Thus, this corresponds to infinite resistivity when the mean-free path I 
becomes equal to I * .  The prediction of this treatment would be then 

(4.7) I . .  critical = I  * - - 0.06 lrncltinppoint 

for the three alkali metals. We do not, in fact, expect there will be any real 
liquid metal which will behave precisely in accord with Eq. (4.7). However, 
what all this does suggest is that, in addition to the mean-free path obtained 
from the Ziman theory, a further important length for electronic transport 
theory is that introduced in Eq. (4.3). This equation is readily written in 
Fourier transform as shown in Appendix 2, just as is the Ziman formula. 
We expect that this precisely defined length, once S(q) and V(q, k,) are 
given, will play an important role in the theory of electron localization due 
to disorder. This is confirmed if we form I*/(2n/kf), i.e. the ratio of I* to the 
de Broglie wavelength for an electron at the Fermi energy. This ratio is 
found from Eq. (4.5) to be nearly unity for Na, being 0.6 for K and Rb. 

Of course, though we think the length I* is therefore of considerable 
importance for electron localization, one will eventually need a fuller dis- 
cussion, perhaps along lines similar to those laid down by Gotze,2 to give a 
first-principles relation between I* and the metal-insulator transition induced 
by disorder. It should be stressed in this context that the evaluation of I* 
from Eq. (4.3) requires merely the input information needed to calculate the 
Ziman resistivity from Eq. (2.1). 

Before turning to discuss the transport informatiqn contained in averages 
of single-particle quantities, we want to add here that further confirmation 
of the usefulness of the force-force correlation function formula for the elec- 
trical resistivity is presented in Appendix 1. There we use it to provide an 
independent derivation of the Dawber-Turner result for the resistivity of a 
binary metallic alloy in the Koster-Slater model. 

4.2 

Having thus formed a clearer picture of the ability of the self-consistent 
theories to describe a phase with localized electron states in addition to the 
short mean-free path liquid metal phase, and the likely limitations of this 
description, we refer again to the dilemma posed at the beginning of this 
section; namely how can single-particle averages know about electron 
localization? We shall discuss this from two standpoints: 

Transport information contained in the single-particle 
average 

i) the optical theorem and 
ii) the character of the Bardeen approximation to the density matrix, 

reflected in Eq. (3.2). 
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10 J.  S. McCASKILL A N D  N. H. MARCH 

First of all, the optical theorem establishes a relationship between the 
spherically symmetric part of the resistivity formula involving a sum of the 
squares of T-matrix elements and an average force formula involving the 
imaginary part of the T-matrix, namely 

h 
2n 

E )  = - Im T J E  - is)  

where the states k are a complete basis, with energies &k. Thus in cases 
where the cos 6 factor in the Ziman formula could be ignored, as for example 
in s-wave scattering, the resistivity is exactly expressible in the form of the 
average of a single-particle property. 

Secondly, half of the resulting mean-free path is the length which enterk 
into the modification of the Green function to an average Green function, 
as in the work of Edwards.’’ This then leads to the interpretation of the 
Ferraz-March method as decoupling (G’) to (G)’. However, the mean-free 
path which is calculated in this latter theory is not the above spherically 
symmetrical dependent quantity from the optical theorem, but a sell-consis- 
tently determined one from a theory which includes the cos 0 factor in zeroth 
order. Thus the approximation amounts to 

where I ,  is the coherence length appearing in the average Green function. 
It is clear however that for the case of a band with spherical scattering, 

the difference in (4.9) would not appear and that the arguments of Section 4.1 
would still indicate the possibility of a transition. Thus the clear separation 
of single-particle properties from a discussion of the metal-insulator transi- 
tion needs modification in cases where the optical theorem is applicable. 

5 OUTSTANDING QUESTIONS FOR FUTURE STUDY 

We have shown in the body of this article and in Appendix 1 that a statistical 
decoupling of averages, or a mode coupling approximation, lead indepen- 
dently to a structure of the force-force correlation type for the electrical 
resistivity. A feedback of the calculated mean-free path into the average 
square of the density matrix, or of the calculated zero frequency memory 
kernel into the density-density Correlation function, then leads to self- 
consistent equations capable of demonstrating localization behaviour and 
the transition to an insulating phase from the short mean-free path liquid 
metal. 
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TRANSPORT IN LIQUID METALS I 1  

But this discussion leads us to raise the following questions: 

i) Is there a natural basis consisting of localized and extended states in 
terms of which the dynamics can be understood as involving statistically 
independent transitions governed by a Boltzmann equation, or is some 
fundamentally new structure required ? The above analysis would suggest 
that a mode coupling approximation and self-consistency are successful 
more in renormalizing the Boltzmann dynamics. 

ii) To what extent does a renormalization of the scattering potential 
from a single-centre one to a multicentre form extend the applicability of the 
force-force correlation function formula. This extension was envisaged in 
the work of Rousseau, Stoddart and MarchI3 and was further discussed by 
Jones. l4 

Since it is clear that electron correlation plays an essential role in defining 
the character of a metal-insulator transition, the ultimate applicability of 
an orbital description of the random electron liquid in terms of energy 
dependent localization lengths and radial distribution functions is brought 
into question for the short mean-free path liquid metal. However the goal of a 
kinetic approach to the description of the transport as a functional of the 
single-particle spectrum remains a worthwhile challenge. 
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Appendix 1 

R ELATlO N TO IMPURITY SCAlTE R I N G 

In this Appendix we shall review two limiting cases of the transport theory 
based on Eq. (3.1). In the first example treated below, plane waves are 
scattered by a spherical potential energy V(r )  of arbitrary strength. For this 
case, as Huang15 was the first to show, the excess resistivity is exactly cal- 
culable in terms of the phase shifts '1, of the I-th partial wave at the Fermi level, 
the result for the resistivity increment being, apart from a multiplying 
constant, 

(Al.l) 

Plane waves scattered by spherical potential of arbitrary 
strength 

As one of us has shown elsewhere,16 Eq. (3.1) can be rewritten by expressing 
o(rl, r,, Ef) in terms of the radial wave functions R,(r,  E,)  of electrons in the 
potential V(r) .  To relate the resulting formula to Huang's result (Al.l), one 
needs to appeal to a result due to Gerjuoy," which was rediscovered by 
Gaspari and Gyorffy," namely 

dV 
dr 

dr r2R,  - R l +  = sin(ql+ - q,) (A1.2) 

when one readily regains Eq. (Al.1). 
To date, this is the sole example we are aware of in which the (energy 

derivative of the) density matrix, CJ in Eq. (3.1) can be evaluated exactly with- 
out very restrictive conditions being imposed on V (in this case, solely the 
spherical symmetry). The above example makes it clear that in this impurity 
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TRANSPORT IN LIQUID METALS 13 

scattering case, the starting point (3.1) of the argument of Ferraz and March 
contains within itself the exact Huang formula (Al .  1). Naturally, one must 
no longer make the approximation (3.2). Gotze’s mode coupling approxima- 
tion does not allow this limit of strong single centre impurity scattering to 
be regained exactly but it is more powerful than the approach of Ferraz and 
March for multicentre problems with strong scattering and therefore short 
mean-free path. 

Koster-Slater impurity model : scattering cross-section 

There is a further case, first treated by Dawber and Turner’g using the Golden 
Rule, in connection with metallic alloys, in which the scattering cross-section 
can be precisely evaluated from Eq (3.1). This is for the simplest version of 
the Koster-Slater” model of an impurity centre. In the case of a perfect 
crystalline host material, this is the model in which the impurity potential I/ 
is assumed to have non-zero matrix elements only between Wannier fuctions 
on the impurity site. 

The way progress can be made in this case is via the T-matrix already dis- 
cussed in Section 4.2. As shown in Ref. 21, the force-force correlation function 
(3.1) can be rewritten as, with the appropriate multiplying factors inserted, 

2m (A1.3) 

where ni is the density of ions. 
We shall now write down the integral equation for the T-matrix as 

T+(kz, k,) = h2,kl -I- xh,,kG,+(k, k)T+(k k1) (A1.4) 

where the plane wave matrix elements of the impurity potential in the Koster- 
Slater model are 

Vkkr = V = constant. (A1.5) 

Then it is straightforward to iterate out Eq. (A1.4) and to sum the resulting 
series to obtain 

k 

(A1.6) 

In this expression, the sum in the denominator can be evaluated in terms of 
the density of states n(E) and its Hilbert transform P ( E )  to yield 

xG,f,O = P(E) - inn(E). 
k 

(A1.7) 
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14 J.  S. McCASKILL AND N. H. MARCH 

Into this we can incorporate Dawber and Turner’s consistency condition for 
V (see their Eq. (4.6)) in the form 

= V*2n2n;(EJ)N-2.  

Thus in Eq. (A1.3) we have 

(A1.9) 

and 

l d k 1  dk2(kl + k2)26 E - - 6 E - - = - (2~)~4k?(2rn /h~)~  ( 2) ( 
(A1.lO) 

where we have used the property 

(Al.ll) 

We then find 

p = - - -  ni 4hk; 1 pe2 f!!)lsin’ (*anZ’). (A1.12) 
N 3e2(2n)’ n3 n2(no(FJ)(12)2 A’ 

Although it is physically appealing to retain n ( E f )  in the denominator, let 
us finally substitute the free electron expressions 

(A1.13) 

and putting the impurity concentration c as the ratio of the number of im- 
purities to the total number of atoms N we find the Dawber-Turner result 

(A1.14) 

from the inverse transport result (3.1). 
We anticipate that the above examples will prove relevant to the discussion 

of the excess resistivity of appropriate dilute liquid metal alloys but it 
would take us outside the scope of the present review to go into further 
details here. 
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Appendix 2 
15 

FORM OF CORRECTIONS TO ZlMAN FORMULA IN LIMIT 
OF LONG MEAN FREE PATH 

In this Appendix, we write in q space the appropriate approximations for the 
resistivity in : . 

a) the approach of Ferraz and March3 
b) the mode coupling approximation of Gotze,* 

demonstrating the reliance on the free electron gas reference system that 
underlies both approaches. The lowest order deviation from the Ziman 
formula is then calculated using the Lindhard dielectric function and the 
two results for 1* in Eq. (4.3) compared. 

Firstly, the Ziman formula in the two notations appears as 

where ro is the Fourier transform of lc(r,, r 2 ,  E,)I2 in the Ferraz-March 
notation and $o(q, 0) in that of Gotze. Going beyond this, Gotze replaces To 
by $ given in Eq. (3.7) and Ferraz and March by 

which contains the exp( - r / l )  factor as a Lorentzian in convolution with $o 
expressed in q-space. Both Eqs. (3.7) and (A2.2) are seen directly then as 
introducing Fermi surface blurring. 

Despite the apparent difference in structure of these two equations and the 
fact that Eq. (3.7) exploits the frequency dependence of the free electron gas 
response function directly, the results for the lowest order deviation from the 
Ziman formula are similar when the (Lindhard) free electron characteristics 
are made explicit. Defining 

consistently with the kernel required for I* in Eqs. (4.1) and (4.2) 

(A2.3) 
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16 J .  S. McCASKILL A N D  N. H. MARCH 

With the aid of Eq. (2.2) the Ferraz-March approach gives 

(4 - 4‘)’ + N q ,  k,) = lim jOm 2 ro(q’, k,) 
1 - 1  -0 

a 
aq 

= som -dq’ro(q‘, k,) 7 S(q - q’) 

- - - _  1 aro(q, k,) - - - _  1 a 4 ” ( q 9 o )  (A2.5) 
2 a4 2 a4 

and using Eq. (3.7) of Gotze we find 

(A2.6) 

of which the first term stems from the static and the second term from the 
dynamic properties of the free electron gas. 

A simple non-interacting free electron characteristic (Lindhard) yields : 

1 sin’ k,lr, - r,l - 
2 If1 - r2I2 

Hence the following results for A(q, k,) can be readily obtained: 

a) In the Ferraz-March method 

1 
A(4, k,) = - O(q - 2k,) + - S(q - 2k 

2 q  “ 4 

b) In the theory of Gotze 

which for q + k, becomes 

(A2.7) 

(A2.8) 

(A2.9) 

(A2.10) 

(A2.11) 

(A2.12) 

We stress, in conclusion, the fact that both the methods lead to l/q’ at small 
q while non-analyticity at the Fermi sphere diameter q = 2k, is exhibited in 
both treatments. 
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